結晶粒微細化強化の極限をめざして
高木 篤雄* Challenge for the Strengthening by Grain Refining
Setsuo Takaki

Synopsis: Grain refining is a useful strengthening technique not only for iron and steel materials but also for all of metallic materials, because the ductility of materials is not reduced so much in comparison with the other strengthening techniques like work-hardening, precipitation hardening and so on. Besides, the other functional properties such as corrosion resistance are also greatly improved by ultra grain refining to around 1μm. By conventional processes, however, it is not so easy to obtain such a fine-grained structure and it is true that there is a high hurdle at around 1μm for grain refining. In this paper, excellent properties are introduced on the steels with ultra fine grains of 1μm or less, and problems on ultra grain refining are described.

Key words: ultra grain refining; Hall-Petch relation; mechanical property; transformation; grain boundary energy; strain energy; dislocation.

1. はじめに

鉄鋼材料に限らずすべての構造材料において、結晶粒微細化強化は、析出強化や加工強化などの他の強化手段に比べて延性や靭性をあまり損うことなく材料の強度を高められるという利点がある。特に鉄鋼材料では、加熱・冷却の過程で様々な相変態が起こり得ることが最大の特徴であり、変態と加工を組み合わせた加工熱処理法を利用すれば工業的な生産プロセスで結晶粒径を10μm程度の大きさにまで細かくできる。相変態は、1）変態を起こすために原子を動かすのに要するエネルギー、2）新しい界面を作るためのエネルギー、3）変態時の体積変化に起因した仕事のエネルギーといういわば変態の抑制力を、駆動力（化学的自由エネルギーや加工で蓄積された物理的エネルギーの総和）が上回った時点で起こるものであるが、できるだけ大きな駆動力を蓄積した状態で相変態させた方がより小さな結晶粒が得られる。再結晶は、化学的自由エネルギーの変化がなく、加工で蓄積されたひずみエネルギーのみを駆動力として進行するので本来相変態の範囲に属さないが、現象論的には相変態と全く同様に扱うことが可能である。いずれにせよ、変態や再結晶が開始するまでは蓄積される駆動力が大きければ大きいほど新相の核生成速度が高くなり、微細な結晶粒が得られるわけであるが、現在、工業的な規模で採用されている熱処理法や加工熱処理法では、鉄鋼材料に蓄積できる駆動力にも制限があることから、合金元素による粒界ドロップ効果や析出物による粒界ピン止め効果2)などを利用して粒成長を抑制する工夫をして、結晶粒径を1μm程度のまで微細化するのは極めて困難である。ここでは、鉄鋼材料の結晶粒を1μmまで超微細化したときに期待される特性や結晶粒超微細化にかかわる問題点や現象を、具体的な実例や理論的な考察を交えながら概説する。

2. 結晶粒超微細化によって期待される特性

Fig.1は、準安定オーステナイト系ステンレス鋼において、著者等が提案した"加工誘起マルテンサイトの逆変態を利用する加工熱処理法"によって結晶粒径を0.2μmまで超微細化させたときの結晶粒径と0.2%耐力の関係を示す3)。工業的に生産されているオーステナイト系ステンレス鋼の結晶粒径は50μm程度で、耐力もせいせい0.2GPaと低く、結晶粒径をさらに10μmまで細かくしてもそれほど顕著な強化は期待されない。しかし、この図から明らかのように、粒径を1μmまで細かくすると耐力は一気に3倍以上にまで増大しており、10μm以下の領域での結晶粒微細化強化が極めて顕著なことがわかる。実用鋼では、一般に10〜100μm程度の狭い範囲で種々の特性の粒径依存性が議論されることが多い、解析結果や強化の見通しに大きな差異を生ずる結果となっている。また、粒界に集積した転位によって生ずる応力集中も結晶粒径が小さくなるほど軽減され

* 九州大学(Kyushu University, Hakoizaki, Fukuoka 812), 工博

3. 加工で加えられるひずみエネルギーと粒界に蓄積されるエネルギー

以上のように、結晶粒を1μm程度にまで小さくすると様々な優れた特性が期待できるが、実際にこのような超微細粒鋼を工業的な規模で製造するのは容易でない。Fig.4は、冷間加工で導入される転位の密度と粒界積中の転位が持つひずみエネルギーの関係を示す。通常の軟鋼には加工しなくても10^12/m²程度の転位が存在して
4. 超強加工による鉄の驚異的な加工硬化と結晶粒微細化

では鉄の基材で結晶粒1μmの壁を越える手段が他にないかというとそうでもない。たとえば、金属粉末と鋼球をボットに入れて強制摺拌するメカニカルミリング法では、通常の圧延法などの加工法では付与できないような著大な量の加工ひずみがミリング中に金属粉末に蓄積されるので、これを利用するのが一つの手段である。Fig. 6は、工業用純鉄粉（初期の硬度：HV50）を高エネルギーの振動型ボールミルでミリング処理したときのミリング時間と鉄粉の硬度の関係を示している。100h程度ミリングすると鉄粉の硬度はなんだんHV950にも達する。参考までに、溶解法で製造した純鉄を加工し得る限界の加工率98%（厚さ10mmを0.2mm）まで冷間圧延した場合の加工硬化量も図中に示している。この場合、圧延材の硬度はせいせいHV300程度であり、その加工硬化の程度は、広い視野に立った鉄の加工硬化挙動という観点からすればほんの初期段階に過ぎないことがわかる。また、ミリング初期の加工硬化は、従来の定説通りに転位密度の増大に起因するものであるが、ミリング後期の加工硬化は、超強加工によって結晶粒がナノメーターのサイズにまで微細化されたことに起因している（結晶粒超微細化）12）13）。また、このように超強加工された鉄は、転位の持つすみエネルギーを駆動力とした一次転位を結晶によってではなく、主として結晶粒の粗大化によって軟化が起こることも明らかにされている12）。Fig. 7は、ミリング処理で超強加工した鉄粉末および焼なましして結晶粒径を変化させた鉄粉末の結晶粒径と硬度の関係を示している。なお図中には、超微粉を焼結して製造されたパルク鋼14）についてもデータを示している。内部にサブグレイン組織を持つ鉄粉のデータを除けば、すべてのデータはほぼ一つの直線に位置しており、結晶粒径を20nmにまで小さくしてもホールヘッジの関係が成立する。
点は非常に興味深い。また、試料の作製法や研究者が、異なるにもかかわらず同一の直線にデータがプロットされる点は、得られた結果の信頼性が十分に高いことを物語っている。粉末の場合、固化成形してバルク化するというやっかいな問題は残されているが、出発材の結晶粒を一気にナノオーダーにまで小さくすることができるので、うまく固化成形すればサブミクロンの材料を作製することも可能となるであろう。

点は非常に興味深い。また、試料の作製法や研究者が、異なるにもかかわらず同一の直線にデータがプロットされる点は、得られた結果の信頼性が十分に高いことを物語っている。粉末の場合、固化成形してバルク化するというやっかいな問題は残されているが、出発材の結晶粒を一気にナノオーダーにまで小さくすることができるので、うまく固化成形すればサブミクロンの材料を作製することも可能となるであろう。

Fig.6. Change in hardness of iron powder with mechanical milling. Hardening in an iron sheet by heavy cold-rolling (98% reduction in thickness) is also shown for reference.

Fig.7. Hall-Petch relationship in iron materials with ultra fine grained structures. Data after Hayashi et al. are obtained in bulk materials produced from ultra fine iron powder 16).

5. 結晶粒微細化の限界

鉄鋼材料は、エネルギーさえ付与すれば鉄原子1個の大きさ（0.25nm）にまで小さくできるのか、けっしてそんなことはないはずで、必ずどこかに限界があるであろう。その限界を実験的に探るのはとても困難なので、ここでは転位論の立場から少し説を使って結晶粒微細化の限界を探ってみる。鉄に限らず多結晶金属の降伏は、一つの結晶粒の粒界に集積した転位によって生ずる応力集中で隅の結晶の転位が活性化され、連鎖的に転位が連動する現象と理解される。したがって、一つの結晶粒内に集積する転位の数を知ることがまず先決である。Fig.8は、外力によってフランクリード源が活動し、障害のある距離aの間にn個の転位が集積している様子を模式的に示している。また、フランクリード源から距離xだけ離れた場所に存在する転位の数D(x)（分布関数）は、次式で与えられることがすでにわかっている 15)。

\[D(x) = -2k(\tau-\tau_f)x/(Gb(a^2-x^2)^{1/2}) \] \[n = 2k(\tau-\tau_f)a/(Gb) \]

ここでkは、ポアソン比をvとして刃状転位の場合k=1/2、らせん転位の場合k=1となる定数である。また、\(\tau \)は外から加わるせん断力、\(\tau_f \)はフランクリード源を活動させるための臨界応力、Gは剛性率、bはバーガースペクトルである。上式を距離ゼロからaの間で積分することによって、障害物で止められて集積している転位の総数を求めることができる。上式の積分関数は簡単に関数して結果のみを示す次のようなになる。

\[n = 2k(\tau-\tau_f)d/(Gb) \]

いまフランクリード源は結晶粒の中心にあり、障害物を結晶粒と考えると、粒径dは2aで与えられ、また\(\tau \)は比べて\(\tau \)は十分に大きいと考えられるので\(\tau_f \)と無視し、外力としてちょうど降伏せん断応力\(\tau_f \)が加わった状態を考えると、そのとき粒界に対して集積している転位の数\(n_f \)は次式で与えられる。

\[n_f = kr_d/(Gb) \]

いま、オーステナイト系ステンレス鋼の剛性率を76GPa、ポアソン比を0.28 16)、バーガースペクトルを0.25mとし、Fig.1の図中に示した式を\(\tau_f = \sigma_0 / 2 \)として上式に代入し、結晶粒径と粒内に集積している転位の数の関係を示したもののがFig.9である。ここで注意すべきことは、集積転位数が1以下になった場合にははや粒内に転位が存在しないないということであり、図中に示すように5〜10nmの結晶粒径がホールペッチ則を満足できる最小粒径ということになる。アルミや鉄のように材料が変わってしまえば、当然剛性率や他の物性値も変わってしまうのでこの限界粒径は異なった値となるが、鉄基の材料であれば結晶構造の影響はあまり無くと考えて良いであろう。実際に、BCC構造の鉄
についても超強加工した鋼材の硬度から同程度の限界粒径が推定され、60mm程度の超微細粒が得られることもX線回折や電子顕微鏡観察によって確認されている。13）

\[
\tau^* = k \tau d^2/(Gb) \tag{4}
\]

この式を \(\tau_n \) について整理し、単結晶の降伏応力強さを \(\sigma_0 \) として粒径の異なる鋼の \(\sigma_{02} \) を与える式に書き直すと次のようになる。

\[
\sigma_{02} = \sigma_0 + 2(\tau^* Gb/k)\sqrt{d^{-1/2}} \tag{5}
\]

この式の形はとりもなおずHall-Petchの関係式そのものであり、仮には、転位に対する粒界の限界強さ \(\tau \) や剛性率、バーガースベクトル、転位の種類といった材料の物性値も必要要因である。事実、鋼製材料で我々が変えることができるフレームワークは \(\tau \) のみである。この値は、純粋物質の粒界偏析などによっても変わり得るであろうし、また頑強な析出物が粒界に付着して析出している組織ではかなり大きな値となることも十分に予想される。

では、 \(\tau^* \) はどの程度の値をとり得るのか？おおよその値は、Fig.1の実験結果から求めた係数と（5）式の係数を比較することで簡単に求めることができる。その結果、らせん転位については3.71GPa、刃状転位については2.67GPaの値が得られた。実際にはこれらの転位が複数して存在するので、平均値として3.2GPa程度の値と見積もりることができよう。完全結晶の理論的な断面強度はG/2π（12GPa）程度なので、粒界自体はこれに比べると高い強さをもっていることになる。言い換えれば、隣接した粒内で新たに転位を活性化させるためには、完全結晶の理論強度に近い大きな応力が必要である。この解析結果は多結晶金属の降伏機構を解明するための一つの指針を与えるものである。

7. なお

結晶粒径を小さくすることは材料の内部エネルギーを上げることを意味し、相変態を利用した加工熱処理をうまく使っても、工業的な規模では粒径10μmのハードルを越えるのはなかなか容易なことではない。ましてや、1μmの粒径ととなればそれはハードルではなく目前に立ちかかまる高い壁といっても過言ではない。現在の鋼製材料の製造技術にはかなり高度なレベルに達しているのに、円周短距離をかかっている感があり、鋼製材料の結晶粒微細化技術に関しても、ソフトおよびハードの両面でおおよそ行き着くところまで来ているように思われる。したがって現在の常識的な生産技術の延長で、結晶粒1μmの壁を打ち破ることはとうてい不可能であろう。本稿で示した超微細粒鋼は、特殊な合金
鋼を用いた特殊な加工手段を採用して得たものなので、
くささ実用化できるというものではないかもしれないが、
鋼鋳造材料を研究している者一人として、前に道がいて
いるかぎりチャレンジしてゆきたい。本稿では、超微細粒
鋼に関するごく一部を紹介したに過ぎなかったかもしれない
が、粒径1μmの向こうにはすばらしい世界がさらに広
がっていることを信じ、その壁を取り崩すための研究が活
発に展開されることを期待する。

文 献

1) 牧 正志：熱処理、29（1989）pp.278-284。
2) 西沢泰二：鉄と鋼、70（1984）pp.1984-1992。
3) 菊村宏紀、永守浩樹、高木節雄、徳永洋一：日本金属学会誌、55
（1984）pp.376-382。
4) 高木節雄：高純度鉄と材料特性、日本金属学会九州支部、日本鉄鋼協
会九州支部、第4回講演討論会資料、（1995）pp.1-10。
6) N.Hasegawa and M.Osawa:Corrosion—NACE,40（1984）pp.371-374。
7) 高木節雄：鉄鋼材料の強化機構・強化理論、日本鉄鋼協会、西山記念
技術講座、第14回・第14回テキスト、（1992）pp.3-21。
8) 田村恒：鉄鋼材料強度学（1969）、pp.96（日刊工業新聞社）
9) 牧 正志：不純物元素の除雑に伴う鋼の組織および材質の変化、日本
鉄鋼協会、西山記念技術講座第143,144回テキスト、（1992）pp.53-71。
11) 菊村宏紀、上田孝行、高木節雄、徳永洋一：鉄と鋼、78
（1992）pp.141-148。
15) 鈴木秀次：転位論入門、（1972）、pp.126（アグネ）
16) 長谷川正義：ステンレス鋼便覧、（1995）、pp.1430（日刊工業新聞）