高強度・低歪迅速軟窒化用鋼（GN21）の開発

小林一博*・細田賢一*2・坪田茂・尾見幸夫*4・山岡孝*4

Development of Rapid Nitrocarburizing Steel (GN21) with High-Strength and Low Heat Treatment Distortion

Kazuhiro Kobayashi, Ken-ichi Hosoda, Kazuichi Tsubota, Yukio Arimi, Kou Yamaoka

Synopsis: An investigation has been made to clarify the effect of alloying elements on nitrocarburizing. According to these results, new grade of rapid nitrocarburizing steel (GN21) was developed.

This newly developed steel shows superior heat distortion and higher fatigue strength properties compared to high-strength grade carburizing steel.

Key words: nitrocarburizing; nitriding; carburizing; alloying element; distortion; fatigue strength; contact fatigue.

1. 緒言

窒化や軟窒化は、一般に数時間以内の短時間処理によって、疲労強度、耐摩耗性の改善が図られたため、各種の機械構造用鋼に広く用いられている。最新の研究では、この部分の性能が改善され、強度や熱処理が重要であるため、処理効果が高まっている。高精度でかつ高強度の迅速軟窒化用鋼を開発するため、軟窒化による合金元素の影響を調査し、成分の最適化を行い、この結果をもとに新規開発鋼について、疲労性や熱処理歪特性を調査した結果を報告する。

2. 迅速軟窒化用鋼の開発目標

迅速軟窒化用鋼の用途として、熱処理が小かつ、かつ浸炭材並みの高強度が求められる車、シャフトやその他機械部品等を想定した。また、軟窒化の要求水準を満たす、実生産ベースでの短時間（〜10h）の軟窒化処理により実用の使用条件を満たすような特性が得られるようを目的にした。

3.1 表面硬度：700HV以上
2.有効硬化層深さ（420HV）：0.50mm以上
3.芯部硬度：300HV

なお、軟窒化前後の熱処理は、焼入れ焼戻し材よりも深い硬化層が得られ、かつ心部硬度をコントロールしやすい焼ならしを採用した。

3. 軟窒化性に及ぼす合金元素の影響

3.1 調査方法及び供試材

軟窒化性に及ぼす合金元素の影響に関するこれまでの報告には、合金元素単独のものが多い。本報告では、Table 1 に示す成分範囲で各合金元素を複合添加した鋼を14チャージ小型真空溶解炉で溶製して供試材とした。

鋼塊を鉄仕上げ、1173Kで焼ならしを行い、直径15mm、厚さ10mmの試験片に加工した。軟窒化処理は、当社所有の流動層炉で行ない（843K×10h、NH3/RH＝1/1）、さらに軟窒化処理後ハードショットピーニング処理（エアノズル式、エ
ア圧: 49N/㎟、ショット径: φ0.6mm、ショット粒硬さ: 54HRC、投射時間: 30s (以下 H-S/F と称す）を施した。

表1 Chemical compositions. (mass%)

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Mo</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>0.40</td>
<td>0.15</td>
<td>0.00</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>～</td>
<td>～</td>
<td>～</td>
<td>～</td>
<td>～</td>
<td>～</td>
<td>～</td>
</tr>
<tr>
<td>0.30</td>
<td>1.00</td>
<td>2.00</td>
<td>1.00</td>
<td>0.50</td>
<td>0.50</td>
<td>1.00</td>
</tr>
</tbody>
</table>

3.2 調査結果及び考察

供試材のミクロ組織をFig.1に示す。心部組織は合金属の量によって異なり、フェライト+パーライトないしベイライタ組織となっている。軟化層の最表面には、10数μmの化合物層が認められ、X線回折の結果では、組成的にはいずれもe+γ相の混合相であり、化合物層の組成に対する合金属の影響は、今回の実験範囲においては認められなかった。

Si, Mn, Cr, Mo, AlおよびV量と軟化層の表面硬さ420および600HVの得られる有効硬化層深さとの関係を、Fig.2からFig.7に示す。

Fig.1 Microstructures of nitrocarburized surface.
(Base steel: 0.25/0.3C-0.5Si-0.9Mn-0.3Cr-0.25Mo-0.5V-0.03Al)

Fig.2 Effect of Si on surface properties after nitrocarburizing.

Fig.3 Effect of Mn on surface properties after nitrocarburizing.

20
軟窒素化に対するこれらの合金元素の影響は、従来の見
R2とほぼ一致するものとの、今回の結果から新たに得られ
た結果を含めてそれぞれの元素の軟窒素化性に及ぼす影響を
まとめると次のようになる。
●Siは、芯部硬さを上げるためには効果的であるが、硬化
層深さを減少させるため、軟窒素化しようとするだけ低
いほうが好ましい。
●Mnは、軟窒素化に対する明瞭な影響を示さない。
●Crは、軟窒素層の表面硬さを向上させるために有効であ
り、また有効化層深さも増大させ窒素化鋼には不可欠の元
素であり、通常1%程度以上添加されることが多い。しか
しMoやVを複合添加させた場合には、添加量が多すぎると
逆に硬化層深さを減少させるため、表面硬さが溶融層並み
の硬さを目標とする場合の添加量としては、従来のものよ
りも低いレベルに抑えるほうが好ましい。
●Vは、特に硬化層を向上させる効果が大きく、Crと同
様添加量の最適値が存在する。
●Moも最適値が存在するが、その効果はCr、Vに比べ
ると小さい。
●Alは、Crと同様の効果を示し、さらに表面硬さを上昇さ
せる効果が大きい。しかし硬化層を低下させるために、
添加量は少ないほうが好ましい。
以上の結果をまとめるとTable 2のようになる。
Table 2 Effects of alloying elements on nitrocarburizing properties.

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Mo</th>
<th>Al</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface hardness</td>
<td>±</td>
<td>±</td>
<td>*</td>
<td>±</td>
<td>*</td>
<td>±</td>
</tr>
<tr>
<td>Effective case depth (600HV)</td>
<td>±</td>
<td>±</td>
<td>*</td>
<td>±</td>
<td>*</td>
<td>±</td>
</tr>
</tbody>
</table>

(* : very effective, + : effective, ± : not effective, - : harmful, ± : effective at low content but harmful at higher content)

4. 迅速軟化処理を用いた鋼の特性

4.1 開発鋼(GN21)の化学成分

前章の結果をもとに、300HVの応力硬さが得られ硬化特性に優れた軟化処理鋼としてTable 3に示す成分を設定した。開発鋼の特徴は、従来の窒化鋼では必須元素として高めに設定されているCrを、有効硬化層深さを深くするために、特に低めに抑えている。

Table 3 Chemical compositions of rapid nitrocarburizing steel. (GN21) (mass%)

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Mo</th>
<th>V</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>0.20</td>
<td>1.50</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
<td>0.030</td>
</tr>
</tbody>
</table>

4.2 素材の微細組織、硬さおよび機構的性質

直径30mmの鍛造材および1173K焼ならし材の微細組織をFig.8に示す。いずれもフェライト＋ベイライト組織であり、硬さは293HBD程度となっている。JIS4号試験片による引張試験およびJIS3号試験片によるシャルピー衝撃試験の結果をTable 4に示す。

Table 4 Mechanical Properties of developed steel.

<table>
<thead>
<tr>
<th></th>
<th>0.2％Y.S. (N/mm²)</th>
<th>T.S. (N/mm²)</th>
<th>E.L. (%)</th>
<th>R.A. (%)</th>
<th>Hardness (HB)</th>
<th>C.I.V. (J/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As forged</td>
<td>672</td>
<td>956</td>
<td>13.8</td>
<td>33.1</td>
<td>292</td>
<td>62.0</td>
</tr>
<tr>
<td>Normalized</td>
<td>662</td>
<td>943</td>
<td>16.9</td>
<td>41.6</td>
<td>292</td>
<td>73.5</td>
</tr>
</tbody>
</table>

4.3 軟化処特性

開発鋼GN21とJIS規格鋼や従来型の軟化処理鋼の有効硬化層深さと窒化処理時間との関係をFig.9に示す。GN21は、所期に設定した硬化層深さの目標値を達成するには、目標処理時間よりも長時間を要するものの、一般の強靭鋼や窒化鋼に比べると窒化速度がかなり早く、また従来型の軟化処理鋼と比べても20%近い迅速化がはかれるため。

GN21の軟化処理(843K×10h)材およびさらにH-S/Pを施した場合の硬さ分布をFig.10に示す。GN21は、軟化処理処理によって浸炭材並みの700HVの高い表面硬さが得られる。またH-S/Pによって、さらに表面の硬さが50HV程度上昇する。浸炭材の場合は、H-S/Pによって、表面層の硬さは50～100HV程度上昇する。これはH-S/Pによって、浸炭層の残留オーステナイトがマルテンサイト化するためであるが、軟化材の場合にはこの効果は期待できず、この場合の硬さ上昇の要因としては、H-S/Pによる加工硬化、および一部侵入したC、Nによる歪み時効が寄与していると考えられる。

Fig.9 Relationship between duration of nitriding and effective case depth (420HV) for several steels.

Fig.10 Hardness profiles of GN21. (Nitrocarburized + H-S/P)

X線残留応力測定で求めた残留応力分布をFig.11に示す。軟化処理のままで硬さ度表面近傍には300MPaの圧縮の残留応力が存在し、さらにH-S/Pを施すことにより最大1050MPaと浸炭材と同程度の残留応力を持有している。
4.4 熱処理歪特性

熱処理歪特性はUS Navy C型歪試験片を用いて、軸受化後の開口部の寸法変化率により評価した。その結果をGN21と同等の焼入性を有するSCM420の浸炭焼入れ焼戻し材の結果と併せてFig.12に示す。

軸受化鋼の場合は、変態による体積変化が無いため、熱処理後の歪は炭素材と比較し1/3以下のレベルに低下する。なお実際の歯車の評価においても非常に良好な歪特性が得られている。

4.5 回転曲げ疲労特性

外径丸8mmの切欠き試験片（α=1.96）による回転曲げ疲労試験の結果をFig.13に示す。軸受化のままでは疲労限は460MPaであるが、さらにH-S/Pを施すことによって60%以上向上して760MPaとなり、高強度焼鋼TSCM820（低Si-1Cr-0.4Mo）の浸炭＋H-S/P材の700MPaよりも高い疲労強度を示している。これは、H-S/Pにより表面に発生した圧縮残留応力により疲労強度の向上がからかれたものと考えられる。

4.7 ローラーピッチング寿命特性

イオン軸受化のままでおよびイオン軸受化＋H-S/P材のローラーピッチング寿命試験結果をFig.14に示す。なお試験条件は接触応力3.24GPa、滑り率60%、油温363Kである。軸受化のままに比べて、H-S/P材のピッチング寿命は若干低下する傾向を示しているが、これはH-S/Pにより表面粗さが劣化したためと考えられる。しかし浸炭＋H-S/P材とほぼ同等のピッチング寿命を示している。

5. 結言

軸受化性に及ぼす合金元素の影響を調査し、最適成分を設定することにより、高精度かつ高強度を有する迅速軸受化用鋼の開発を行った。得られた結果は次の通りである。

①軸受化鋼において、特に硬化深さを深くするためには、CrとV添加量に最適含有量が存在し、Moをもこの傾向が認められる。SiおよびAlの添加は硬化層深さを深くするためには好ましくない。
②軸受化処理材の熱処理歪みは、同等の焼入性を有するSCM420焼入れ材の1/3以下となる。
③軸受化＋H-S/P材の疲労強度は、軸受化のままでのものに比較し60%以上向上し、高強度焼鋼TSCM820の浸炭＋H-S/P材に上回る疲労強度を有している。
④軸受化＋H-S/P材は、軸受化のままのものと比較し、ややピッチング寿命は低下するが、浸炭＋H-S/P材とほぼ同等のピッチング寿命特性を有している。

文献

1) 高瀬秀夫：鉄と鋼，66（1980），p.423
2) 大沢 直：電気製鋼，49（1978），p.43
3) 大木義夫：熱処理，30（1990），p.309
4) 田原達男：電気製鋼，47（1977），p.476
5) 三輪松久，大田幸也，花岡真則，生野克治，三原孝司，辻 誠夫：マツダテクノロジー，8（1990），p.130
6) 小林一博，本間昭一，坂本高志：鉄と鋼，68（1982），S175
7) B. E. Edenhof und H. Trenkler：Härterei Technische Mitteilungen，35（1980），p.290
9) 大沢 直：鉄と鋼，68（1982），S175

Sanyo Technical Report Vol.1（1994）No.1